Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922542

RESUMO

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

3.
Front Immunol ; 13: 968317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439154

RESUMO

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Proteínas do Envelope Viral , Estudos Soroepidemiológicos , COVID-19/diagnóstico , Glicoproteínas de Membrana
4.
Cell Rep Med ; 2(7): 100327, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34124701

RESUMO

Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein, with a corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ- and/or TNF-α-producing T cells is comparable between infants and adults. On principal-component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19.


Assuntos
Formação de Anticorpos , COVID-19/imunologia , Interferon gama/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Feminino , Humanos , Imunoglobulina A , Imunoglobulina G , Lactente , Recém-Nascido , Interferon gama/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Adulto Jovem
5.
Small ; 15(4): e1804267, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30569587

RESUMO

Photoreaction centers facilitate the solar energy transduction at the heart of photosynthesis and there is increasing interest in their incorporation into biohybrid devices for solar energy conversion, sensing, and other applications. In this work, the self-assembly of conjugates between engineered bacterial reaction centers (RCs) and quantum dots (QDs) that act as a synthetic light harvesting system is described. The interface between protein and QD is provided by a polyhistidine tag that confers a tight and specific binding and defines the geometry of the interaction. Protein engineering that changes the pigment composition of the RC is used to identify Förster resonance energy transfer as the mechanism through which QDs can drive RC photochemistry with a high energy transfer efficiency. A thermodynamic explanation of RC/QD conjugation based on a multiple/independent binding model is provided. It is also demonstrated that the presence of multiple binding sites affects energy coupling not only between RCs and QDs but also among the bound RCs themselves, effects which likely stem from restricted RC dynamics at the QD surface in denser conjugates. These findings are readily transferrable to many other conjugate systems between proteins or combinations of proteins and other nanomaterials.


Assuntos
Engenharia de Proteínas/métodos , Pontos Quânticos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fotoquímica/métodos , Ligação Proteica
6.
Biochim Biophys Acta ; 1857(12): 1829-1839, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614060

RESUMO

A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native macromolecular architectures remains largely unexplored. In this work it is shown that the assembly of dimers, trimers or tetramers of the naturally monomeric purple bacterial reaction centre can be directed by augmentation with an α-helical peptide that self-associates into extra-membrane coiled-coil bundle. Despite this induced oligomerisation the assembled reaction centres displayed normal spectroscopic properties, implying preserved structural and functional integrity. Mixing of two reaction centres modified with mutually complementary α-helical peptides enabled the assembly of heterodimers in vitro, pointing to a generic strategy for assembling hetero-oligomeric complexes from diverse modified or synthetic components. Addition of two coiled-coil peptides per reaction centre monomer was also tolerated despite the challenge presented to the pigment-protein assembly machinery of introducing multiple self-associating sequences. These findings point to a generalised approach where oligomers or longer range assemblies of multiple light harvesting and/or redox proteins can be constructed in a manner that can be genetically-encoded, enabling the construction of new, designed bioenergetic systems in vivo or in vitro.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo Energético , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteobactérias/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Simulação de Dinâmica Molecular , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Proteobactérias/efeitos da radiação , Relação Estrutura-Atividade
7.
PLoS One ; 11(3): e0151582, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982879

RESUMO

The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the ß1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of ß1-adrenergic receptor occurs in n-decyl-ß-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Ligantes , Dobramento de Proteína , Desdobramento de Proteína , Proteólise , Receptores Acoplados a Proteínas G/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Ureia/química
8.
Proc Natl Acad Sci U S A ; 108(34): 14133-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21831834

RESUMO

Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most of which have low or intermediate values, suggesting that native structure is disrupted at these amino acid positions in the transition state. Notably, a cluster of residues between E204 and M209 all have Φ-values close to zero. Disruption of helix G is further confirmed by a low Φ-value of 0.2 between residues T170 on helix F and S226 on helix G, suggesting the absence of a native hydrogen bond between helices F and G. Φ-values for paired mutations involved in four interhelical hydrogen bonds revealed that all but one of these bonds is absent in the transition state. The unstructured helix G contrasts with Φ-values along helix B that are generally high, implying native structure in helix B in the transition state. Thus helix B seems to constitute part of a stable folding nucleus while the consolidation of helix G is a relatively late folding event. Polarization of secondary structure correlates with sequence position, with a structured helix B near the N terminus contrasting with an unstructured C-terminal helix G.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Dobramento de Proteína , Alanina/genética , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese/genética , Mutação/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
9.
J Biol Chem ; 286(21): 18807-15, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21345797

RESUMO

Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Dobramento de Proteína , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Ureia/química
10.
J Am Chem Soc ; 132(44): 15468-70, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20949939

RESUMO

Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under the harsh activation conditions required to release it from the detergent micelle into the gas phase. We also found that the quaternary structure of the transporter, which has fewer transmembrane subunits than the ion channel, is less stable once stripped of detergents and bulk water. These results highlight the potential of ion mobility mass spectrometry for characterizing the overall topologies of membrane protein complexes and the structural changes associated with nucleotide, lipid, and drug binding.


Assuntos
Gases/química , Proteínas de Membrana/química , Complexos Multiproteicos/química , Subunidades Proteicas/química , Espectrometria de Massas , Modelos Moleculares
11.
Science ; 321(5886): 243-6, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18556516

RESUMO

The ability to maintain interactions between soluble protein subunits in the gas phase of a mass spectrometer gives critical insight into the stoichiometry and interaction networks of protein complexes. Conversely, for membrane protein complexes in micelles, the transition into the gas phase usually leads to the disruption of interactions, particularly between cytoplasmic and membrane subunits, and a mass spectrum dominated by large aggregates of detergent molecules. We show that by applying nanoelectrospray to a micellar solution of a membrane protein complex, the heteromeric adenosine 5'-triphosphate (ATP)-binding cassette transporter BtuC2D2, we can maintain the complex intact in the gas phase of a mass spectrometer. Dissociation of either transmembrane (BtuC) or cytoplasmic (BtuD) subunits uncovers modifications to the transmembrane subunits and cooperative binding of ATP. By protecting a membrane protein complex within a n-dodecyl-beta-d-maltoside micelle, we demonstrated a powerful strategy that will enable the subunit stoichiometry and ligand-binding properties of membrane complexes to be determined directly, by precise determination of the masses of intact complexes and dissociated subunits.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Micelas , Espectrometria de Massas por Ionização por Electrospray , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Detergentes , Proteínas de Escherichia coli/metabolismo , Gases , Glucosídeos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Complexos Multiproteicos/química , Nanotecnologia , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Solubilidade , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...